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Abstract— Similarity queries, giving a way to disease diagnosis
based on similar patients, have wide applications in eHealthcare
and are essentially demanded to be processed under fine-grained
access policies due to the high sensitivity of healthcare data.
One efficient and flexible way to implement such queries is to
outsource healthcare data and the corresponding query services
to a powerful cloud. Nevertheless, considering data privacy,
healthcare data are usually outsourced in an encrypted form and
required to be accessed in a privacy-preserving way. In the past
years, many schemes have been proposed for privacy-preserving
similarity queries. However, none of them is applicable to achieve
data access control and access pattern privacy preservation.
Aiming at this challenge, we propose an efficient and access
pattern privacy-preserving similarity range query scheme with
access control (named EPSim-AC). In our proposed scheme,
we first design a novel tree structure, called k-d-PB tree, to index
healthcare data and introduce an efficient k-d-PB tree based
similarity query algorithm with access control. Second, to balance
the search efficiency and access pattern privacy of k-d-PB tree,
we also define a weakened access pattern privacy, called k-d-PB
tree’s β-access pattern unlinkability. After that, we preserve
the privacy of k-d-PB tree based similarity queries with access
control through a symmetric homomorphic encryption scheme
and present our detailed EPSim-AC scheme. Finally, we analyze
the security of our scheme and also conduct extensive experiments
to evaluate its performance. The results demonstrate that our
scheme can guarantee k-d-PB tree’s β-access pattern unlinkabil-
ity and has high efficiency.

Index Terms— Similarity query, access control, access pattern
privacy, eHealthcare, k-d-PB tree.

I. INTRODUCTION

THE rapid growth of aging population, the boom of wire-
less body area networks, and the digitization of healthcare

systems have jointly facilitated the generation of a massive
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amount of healthcare data in healthcare centers [1], and the
generated data have been further utilized to provide high-
quality healthcare query services to doctors. Among these ser-
vices, similarity queries, which search on a healthcare dataset
for historical patients similar to the current patient, are highly
regarded [2], [3]. Due to privacy concerns, healthcare centers
usually authorize each doctor to access a small proportion of
data. For example, an ophthalmologist is only authorized to
access ophthalmic patients’ data. As a result, similarity queries
should be implemented under the restraint of access control.
Specifically, suppose that xi is a healthcare record with an
access policy ai , and (q, τ ) is a similarity query request with
an attribute vector v j , where q is a query record and τ is
a query range. Then, xi satisfies the query request (q, τ ) iff
the Euclidean distance between xi and q is within τ , i.e., the
distance d(xi , q) ≤ τ , and v j satisfies the access policy
ai , i.e., HV.Match(ai , v j ) = 1, where the access control is
realized by the Hidden Vector based access structure and its
match relationship is denoted by “HV.Match(ai , v j ) = 1”
(defined in Subsection III-A).

To efficiently implement similarity queries with access
control, healthcare centers are inclined to outsource their data
to a computationally powerful cloud and depute the cloud
server to provide the corresponding query services to doctors.
Considering data privacy, datasets are usually outsourced in an
encrypted form and are required to be accessed in a privacy-
preserving way because leaking datasets’ access pattern and
even datasets’ update information may result in the leakage
of entire datasets [4]–[6]. In this work, we focus on the
similarity query over a static dataset, and as a result, it is
free of the datasets’ update based attacks in [6]. However,
it may suffer from access pattern based attacks in [4], [5].
Although various privacy-preserving similarity query schemes
[2], [7]–[19] have been proposed, none of them can simul-
taneously preserve the access pattern privacy and achieve
data access control. Specifically, schemes in [2], [7]–[15]
are not access pattern privacy-preserving, and all of them
[2], [7]–[19] cannot achieve data access control. The reason
for lacking work on privacy-preserving similarity queries with
access control and access pattern privacy is that there are
two challenges lying in designing such a scheme as follows:
Challenge I: How to efficiently achieve similarity queries
with access control? Existing researches on similarity queries
and access control are independently proposed, i.e., many
schemes [2], [7]–[19] were proposed for privacy-preserving
similarity queries, and many were proposed for data access
control [20], [21]. However, there is no scheme specifically
designed for efficiently processing similarity queries and
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access control. A straightforward way to achieve similarity
queries with access control is to integrate a similarity query
scheme with an access control scheme. That is, when a
similarity query request is coming, we first use a similarity
query scheme to search on the dataset for a set of records
satisfying d(xi , q) ≤ τ and then verify whether each such

xi satisfies HV.Match(ai , v j )
?= 1. Nevertheless, such an

integration is inefficient because the access control is only
used for verifying the returned records from similarity query
scheme and remained to be fully exploited for query efficiency
improvement. Challenge II: How to balance the access pattern
privacy and efficiency of similarity queries? Private Infor-
mation Retrieval (PIR) [22] and Oblivious Random Access
Machine (ORAM) [23] are two typical techniques designed
for access pattern privacy preservation but they are respectively
inefficient in the computational cost and communication over-
head, which will inevitably degrade the efficiency of similarity
queries.

Thus, it is still challenging to achieve privacy-preserving
similarity queries with access control and access pattern pri-
vacy. To address these challenges, we propose an efficient and
privacy-preserving similarity range query scheme with access
control (EPSim-AC) over an encrypted healthcare dataset,
which can (i) efficiently achieve similarity queries with access
control; and (ii) well balance the access pattern privacy
and query efficiency of similarity queries. In our scheme,
we develop two strategies to tackle with Challenge I and
Challenge II as follows.
• Strategy I: We design a new tree structure, called k-d-PB

tree, to index the healthcare center’s dataset. Since k-d-PB
tree involves not only healthcare data records but also their
attributes, it can jointly exploit similarity query criteria and
access control requirements for query efficiency improvement.
Then, we design an efficient k-d-PB tree based similarity range
query algorithm with access control.
• Strategy II: To well balance the access pattern privacy

and efficiency of similarity queries, we define a kind of
weakened access pattern privacy, called k-d-PB tree’s β-access
pattern unlinkability for β > 1, in which a k-d-PB tree path
is indistinguishably accessed with (β − 1) tree paths. The
reason why we consider β-access pattern unlinkability is that
hiding the access pattern of each tree path among all tree
paths is unnecessary and outrageously expensive [24] while
β-access pattern unlinkability can be achieved at a relatively
low cost. Although k-d-PB tree’s β-access pattern unlinkability
is weaker than its full access pattern, it is secure enough when
the k-d-PB tree is large. The introduction of k-d-PB tree’s
β-access pattern unlinkability can facilitate the balance of
access pattern privacy and similarity query efficiency.

Specifically, the main contributions of this work are three-
fold as follows.
• First, we design a k-d-PB tree and an efficient k-d-PB tree

based similarity range query algorithm to process similarity
queries with access control.
• Second, we define the k-d-PB tree’s β-access pattern

unlinkability to facilitate the balance of similarity query effi-
ciency and access pattern privacy.
• Third, we employ a symmetric homomorphic encryp-

tion (SHE) scheme to preserve the privacy of k-d-PB tree

Fig. 1. System model under consideration.

based similarity query algorithm and further propose our
EPSim-AC scheme. In addition, we analyze the security of our
scheme and conduct experiments to evaluate its performance.
The results demonstrate that our scheme can guarantee k-d-PB
tree’s β-access pattern unlinkability and has high efficiency.

The remainder of this paper is organized as follows.
In Section II, we introduce our system model, security model,
and design goal. Then, we describe some preliminaries in
Section III. In Section IV, we present our scheme, followed
by security analysis and performance evaluation in Section V
and Section VI, respectively. In Section VII, we present some
related work. Finally, we draw our conclusion in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we introduce our system model, security
model, and identify our design goal.

A. System Model

In the system model, we consider an access pattern privacy-
preserving similarity query scheme with access control in the
cloud, which contains three types of entities, i.e., a healthcare
center, two cloud servers {S1, S2}, and multiple query doctors
{U1, U2, · · · }, as shown in Fig. 1.
• Healthcare Center (HC): HC has a healthcare dataset with

a huge volume of healthcare records collected from historical
patients. Each record is a d-dimensional vector xi and is
associated with an l-dimensional access policy vector ai .
Doctors can have access to xi iff their access attributes
satisfy the access policy ai . Without loss of generality, let
X = {(xi , ai )|i = 1, 2, · · · , n} denote the healthcare dataset.
To take full advantage of X ’s value, HC uses X to offer an
efficient similarity query service with access control to doctors.
Considering the constraint of computational capability and
storage space, HC outsources X to a cloud and delegates the
corresponding cloud servers to offer similarity query services
to doctors. To guarantee the data only be shared with qualified
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doctors and improve query efficiency, HC builds an index tree
T for X . Since the healthcare data contain some sensitive
information, HC encrypts T into an encrypted tree E(T) and
outsources it to the cloud.
• Query Doctors {U1, U2, · · · }: In our system model, there

exist many query doctors, denoted by {U1, U2, · · · }. Each U j
is associated with an attribute vector v j , which determines
U j ’s access right to the outsourced healthcare dataset E(T).
That is, U j only has access to E(T)’s data records whose
access policies can be satisfied by v j . Specifically, when U j
launches a similarity query (q, τ ) to the cloud servers, the
returned query result will be all records satisfying d(xi , q) ≤ τ
and HV.Match(ai , v j ) = 1, where q is a d-dimensional query
record and τ is a query range.
• Two Cloud Servers {S1, S2}: In our system model, there

are two cloud servers, denoted by S1 and S2. Both of them have
powerful computing resources and abundant storage spaces.
S1 and S2 respectively store the encrypted index tree E(T) of
the healthcare data and the secret key that is used to encrypt
the index tree. On receiving similarity query requests from
doctors, S1 and S2 can cooperate together on searching E(T)
for the query results and returning them to query doctors.

B. Security Model

In our security model, HC is assumed to be trusted because
it is the initiator of the entire system. Query doctors are
assumed to be honest, namely, they will honestly follow our
scheme to launch similarity query requests to cloud servers.
The honest assumption is reasonable because doctors in our
scheme have been authorized by the HC to enjoy the query
services. Their any misbehavior may result in serious penalties
and even the revocation of authorization from the HC. For
cloud servers, both S1 and S2 are considered to be honest-but-
curious. That is, they will honestly follow the protocol to store
the outsourced healthcare data for HC and offer the similarity
query service with access control to doctors. However, they
may be curious about some private information, including the
access pattern of healthcare dataset and plaintexts of healthcare
data records, query requests and query results. In addition,
we assume that there is no collusion between S1 and S2. The
non-collusive assumption is reasonable because different cloud
servers may have a conflict of interest. Note that there may
be other active attacks in the system. Since this work focuses
more on privacy preservation, those attacks are beyond the
scope of this paper and will be discussed in our future work.

C. Design Goal

In this work, our goal is to design an efficient and privacy-
preserving similarity query scheme with access control over
cloud, and the following objectives should be achieved.
• Privacy preservation: The privacy of the healthcare

dataset, similarity query requests, and query results should be
preserved. Meanwhile, we aim to hide k-d-PB tree’s β-access
pattern privacy from cloud servers.
• Efficiency: Since the privacy preservation objective

inevitably incurs the additional computational cost, we also
aim to improve the query efficiency as much as possible.

Fig. 2. Explanation of Hilbert exclusion condition.

III. PRELIMINARIES

In this section, we will review some preliminaries, including
hidden vector based access structure, Hilbert exclusion condi-
tion, and a symmetric encryption (SHE) technique.

A. Hidden Vector-Based Access Structure

Hidden vector based access structure is a kind of attribute
based access control and is commonly used to implement
fine-grained access control for healthcare data [25]. Let �
denote all attributes in the system and �l denote the domain
of l-dimensional attribute vectors. Let “∗” denote the don’t
care attribute and {�∪∗}l denote the domain of l-dimensional
vectors over {� ∪ ∗}. Without loss of generality, we assume
that all attribute values in � are positive integers. An access
policy is denoted as a = {a1, a2, · · · , al} ∈ {� ∪ ∗}l .
An attribute vector is denoted as v = (v1, v2, · · · , vl ) ∈ �l .
Let HV.Match(a, v) denote the match relationship between a
and v, where

HV.Match(a, v) =
�

1 ai = vi or ai = “ ∗�� for 1 ≤ i ≤ l;
0 Otherwise.

That is, v satisfies the access policy a iff vi has the same value
as ai for all ai �= “∗��.

B. Hilbert Exclusion Condition

Hilbert exclusion condition was proposed in [26] and can
be employed to speed up the query efficiency of similarity
queries as shown in Theorem 1.

Theorem 1 (Hilbert Exclusion Condition): Let p1, p2, and
q denote three d-dimensional data records satisfying
d(p1, q) > d(p2, q), where d(·, ·) denotes the Euclidean
distance. If they satisfy the inequality d(p1,q)2−d(p2,q)2

2d(p1,p2) > τ ,
any record xi satisfying d(xi , q) ≤ τ is closer to p2 than p1,
i.e., d(xi , p1) > d(xi , p2).

In the following, we prove the correctness of Theorem 1.
Proof: As shown in Fig. 2, given two records p1 and

p2, the perpendicular bisector plane of the line p1p2 can be
represented as Vp1,p2 : (x − p1+p2

2 )T (p1 − p2) = 0. Then, the
distance between q and Vp1,p2 will be

d(Vp1,p2, q)

=
���� 1

d(p1, p2)
∗ (q− p1 + p2

2
)T (p1 − p2)

����
=

���� 1

d(p1, p2)
∗ 2qT (p1 − p2)− (�p1�2 − �p2�2)

2

����
=

����d(p2, q)2 − d(p1, q)2

2d(p1, p2)

���� .
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Since d(p1, q) > d(p2, q) as described in Theorem 1, we can
further deduce that d(Vp1,p2 , q) = d(p1,q)2−d(p2,q)2

2d(p1,p2)
. In this

case, when d(p1,q)2−d(p2,q)2

2d(p1,p2)
> τ , we have d(Vp1,p2 , q) > τ .

According to Fig. 2, we can easily deduce that any record xi
satisfying d(xi , q) ≤ τ is closer to p2 than p1, i.e., d(xi , p1) >
d(xi , p2).

C. SHE Technique

SHE technique is a symmetric homomorphic encryption
technique, which was proposed in [27] and has been proved
to be semantically secure in [28]. It can support leveled
homomorphic addition and multiplication. Specifically, the
SHE technique �SHE = (KeyGen, Enc, Dec) is defined as
follows.
• KeyGen(k0, k1, k2): Given three security parameters
{k0, k1, k2} with k1 	 k2 < k0, the key generation algorithm
first selects two prime numbers p, q such that |p| = |q| = k0,
and let N = pq . Then, it chooses a random number L such that
|L| = k2. Finally, it outputs the public key pk = (k0, k1, k2,N),
the secret key sk = (p,L), and the basic message space
M = {m|m ∈ [−2k1−1, 2k1−1)}.
• Enc(m, sk, pk): A message m ∈ M can be encrypted

by pk and sk as E(m) = (rL+ m)(1 + r � p) mod N, where
r ∈ {0, 1}k2 and r � ∈ {0, 1}k0 are random numbers.
• Dec(sk, E(m)): On input sk and E(m), the decryption

algorithm first computes m� = (E(m) mod p) mod L =
(m + L) mod L. Then, if m� < L

2 , it means that m ≥ 0, and
m = m�. If m� > L

2 , it means that m < 0, and m = m� − L.
The SHE technique satisfies the following homomor-

phic addition and multiplication properties: (i) Homomorphic
addition-I: E(m1)+E(m2)→ E(m1+m2); (ii) Homomorphic
multiplication-I: E(m1) ∗ E(m2)→ E(m1 ∗ m2); (iii) Homo-
morphic addition-II: E(m1) + m2 → E(m1 + m2); and (iv)
Homomorphic multiplication-II: when m2 > 0, E(m1)∗m2 →
E(m1 ∗ m2).

In addition, with the homomorphic properties, the SHE
technique can be transformed to a public key encryption
scheme, as discussed in [29]. Let E(0)1 and E(0)2 denote two
ciphertexts of 0, which are generated by encrypting 0 twice.
Then, if we regard {E(0)1, E(0)2} as the public key, we can
encrypt a message m as

E(m)← (m + r1 ∗ E(0)1 + r2 ∗ E(0)2) mod N, (1)

where r1, r2 ∈ {0, 1}k2 . As proved in [29], the public key
version of the SHE technique is also semantically secure.

Sign Computation Protocol: Based on the SHE technique,
we have proposed a privacy-preserving sign computation pro-
tocol in [28]. This protocol is run between two non-collusive
cloud servers (i.e., S1 and S2 in our scheme). S1 holds
two ciphertexts E(m) and E(−1), and S2 holds a secret
key sk, where m ∈ M. They cooperate on running the sign
computation protocol such that S2 obtains the sign of m while
keeping the plaintext of m secret from both S1 and S2, where
the sign of m is defined as

sign(m) =
�

1 m > 0;
−1 m ≤ 0.

The sign computation protocol has two steps as follows.

Step 1: S1 first chooses two random numbers r1, r2 ∈
{0, 1}k1 satisfying r1 > r2 > 0 and uses the homomorphic
properties to compute

(r1 ∗ E(m)+ r2 ∗ E(−1)) mod N→ E(r1m − r2).

Then, S1 sends E(r1m − r2) to S2.
Step 2: On receiving E(r1m−r2), S2 uses sk to recover the

value r1m − r2 as Dec(sk, E(r1m − r2))→ r1m − r2. Based
on the sign of r1m − r2, S2 sets the sign of m as

sign(m) =
�

1 r1m − r2 > 0;
−1 r1m − r2 < 0.

IV. OUR PROPOSED SCHEME

In this section, we present our EPSim-AC scheme. Before
delving into the details, we first introduce a k-d-PB tree and
the corresponding similarity range query algorithm with access
control over the k-d-PB tree. Then, we define k-d-PB tree’s
β-access pattern privacy considered in this work.

A. k-d-PB Tree

k-d-PB tree is designed by integrating the key idea of k-d
tree and partition-based (PB) tree, and can efficiently support
similarity queries with access control. Before introducing the
k-d-PB tree in detail, we first recall the key idea of k-d tree
and PB tree. Both of them are used for representing multi-
dimensional data records and built by recursively cutting or
partitioning a dataset into subdatasets. Meanwhile, each of
their internal nodes has two key values, a left subtree Tl ,
and a right subtree Tr . Differently, the key values are chosen
in different ways. For the k-d tree, the key values include
a cutting dimension cd and a cutting value val, where cd
is randomly chosen among all dimensions and val is the
medium value of all data records in the cd-th dimension.
Data records in the left subtree Tl (resp. right subtree Tr )
are less than or equal to (resp. larger than) val in the
cd-th dimension. For the PB tree, the key values are two
pivot records, denoted by p1 and p2, that are chosen from
all data records. Data records in the left subtree Tl (resp. right
subtree Tr ) are closer or have an equal distance (resp. farther)
to p1 than p2. Based on the idea of the k-d tree and PB tree,
we design a k-d-PB tree.

Let X = {(xi , ai )|i = 1, 2, · · · , n} denote a healthcare
dataset. Each xi = (xi,1, xi,2, · · · , xi,d ) is a d-dimensional
healthcare data record. Each ai = (ai,1, ai,2, · · · , ai,l ) ∈
{�∪∗}l is an l-dimensional hidden vector based access policy.
Then, X can be represented to a k-d-PB tree T, as shown in
Alg. 1. Each internal node of T has two key values, a left
subtree, and a right subtree. The key values can be chosen
based on either data records or access policy. We take the root
node as an example to show the way to choose key values.

Case 1: Choose key values of the root node based on data
records. In this case, the key values choosing way is the same
as that of PB tree. First, we choose two data records p1, p2 ∈
{xi}ni=1 as pivots. Based on p1 and p2, we divide X into
two subdatasets X1 and X2. For each (xi , ai ) ∈ X1 (resp.
(xi , ai ) ∈ X2), xi is closer or has an equal distance (resp.
farther) to p1 than p2. As a result, the key values of the root
node are p1 and p2.
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Case 2: Choose key values of root node based on access
policy. In this case, the key values choosing way is the same
as that of k-d tree. First, we choose a cutting dimension cd
from all l dimensions. Then, we compute the median value
of all access policy vectors {ai}ni=1 in the cd-th dimension
as the cutting value val. Note that the values of {ai}ni=1 are
in the domain of {� ∪ ∗}. To avoid the effect of “*”, when
computing val, we only consider the data records whose
values in the cd-th dimension are not “∗”. Based on cd and
val, we divide the dataset X into two subdatasets X1 and X2.
For each (xi , ai ) ∈ X1, the value of ai is less than or equal to
val, or is “*” in the cd-th dimension. That is, ai,cd ≤ val
or ai,cd =“*”. For each (xi , ai ) ∈ X2, the value of ai is
larger than val or is “*” in the cd-th dimension. That is,
ai,cd > val or ai,cd =“*”. As a result, the key values of the
root node are cd and val.

After determining key values of the root node, we continue
to build the left subtree Tl and right subtree Tr of the root
node based on the subdatasets X1 and X2, respectively.

Algorithm 1 TreeBuilding(Dataset X )
1: Set X1 = ∅;
2: Set X2 = ∅;
3: if use data records as key values then
4: Choose two pivots {p1, p2};
5: key1 = p1; key2 = p2;
6: for each (xi , ai ) ∈ X do
7: if d(xi , p1) ≤ d(xi , p2) then
8: X1 = X1 ∪ {(xi , ai )};
9: else

10: X2 = X2 ∪ {(xi , ai )};
11: else if use access policy as key values then
12: Choose a cutting dimension cd;
13: val = median{ai,cd|ai,cd �= “∗�� for i = 1, 2, · · · , n};
14: key1 = cd; key2 = val;
15: for each (xi , ai ) ∈ X do
16: if ai,cd ≤ val || ai,cd = “∗�� then
17: X1 = X1 ∪ {(xi , ai )};
18: else if ai,cd > val || ai,cd = “∗�� then
19: X2 = X2 ∪ {(xi , ai )};
20: Tl = TreeBuilding(X1);
21: Tr = TreeBuilding(X2);
22: return Root(key1, key2, Tl , Tr );

For better understanding, in the following, we give an
example to show the structure of the k-d-PB tree.

Example 1: Let X = {(xi , ai )}7i=1 be a dataset
with 7 records, where⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x1 = (2, 3); a1 = (2, 5); x2 = (3, 1); a2 = (3, 2);
x3 = (7, 8); a3 = (1, 2); x4 = (8, 9); a4 = (∗, 1);
x5 = (1, 1); a5 = (4, 1); x6 = (3, 4); a6 = (6, 4);
x7 = (8, 8); a7 = (5, 3).

We can build a k-d-PB tree for the dataset X , as shown in
Fig. 3. As depicted in the figure, the key values of the root
node are chosen based on the access policy, where cd = 1 and
val = 3. Based on the key values, all records with ai,cd ≤

Fig. 3. Example of k-d-PB tree building.

val or ai,cd =“*” are put in the left subtree, and all records
with ai,cd > val or ai,cd =“*” are put in the right subtree.
In the second layer of the tree, the key values are chosen
based on data records, where the key values of the left one
are {p1 = (2, 3), p2 = (8, 9)}, and those of the right one are
{p1 = (1, 1), p2 = (8, 9)}. Based on these key values, the
records can be further divided into two subdatasets based on
their distance to the pivots, as shown in Fig. 3. After that,
we can recursively build subtrees for the subdatasets. Due to
page limitation, we omit the details here.

B. Similarity Query Algorithm With Access Control

Based on k-d-PB tree, we design an efficient similarity range
query algorithm with access control. Let X = {(xi , ai )|i =
1, 2, · · · , n} be a healthcare dataset and have been represented
to a k-d-PB tree T. Let (q, τ, v j ) be a query request, where
q is a query data record, τ is a query range, and v j ∈ �
is U j ’s attribute vector. Then, we can run the similarity
query algorithm to search on T for all data records satisfying
d(xi , q) ≤ τ and HV.Match(ai , v j ) = 1. As shown in
Alg. 2, the similarity range query algorithm has two stages,
i.e., filtration and verification.
• Filtration stage: In the filtration stage, the searcher

searches on X for a candidate set C containing data records
that may satisfy the query request as follows.

(1) When the searched node is a leaf node with the data
record (xi , ai ), the searcher directly adds (xi , ai ) into the
candidate set C, i.e., C = C ∪ {(xi , ai )}.

(2) When the searched node node is an internal node. Based
on node’s key values, there are two cases.

Case 1: The key values are pivots (p1, p2). If (p1, p2) and
(q, τ ) do not satisfy Hilbert Exclusion Condition, i.e.,

d(p1, q)2 − d(p2, q)2

2d(p1, p2)
≤ τ,

data records satisfying d(xi , q) ≤ τ may fall in Tl . Then,
node.Tl cannot be pruned and needs to be searched. Similarly,
if (p1, p2) and (q, τ ) do not satisfy that

d(p2, q)2 − d(p1, q)2

2d(p1, p2)
< τ,

data records satisfying d(xi , q) ≤ τ may fall within node.Tr .
Then, node.Tr needs to be searched.

Case 2: The key values of node are (cd, val). When
v j,cd ≤ val, all records satisfying HV.Match(ai , v j ) = 1
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are in node.Tl . Then, only node.Tl needs to be searched
later. Otherwise, when v j,cd > val, all records satisfying
HV.Match(ai , v j ) = 1 are in node.Tr . Then, only node.Tr
needs to be searched later.

Algorithm 2 SimQuery(Tree T, Query (q, τ, v j ))

1: // Filtration stage
2: C = FILTRATION(T.root, (q, τ, v j ));
3: // Verification stage
4: for each (xi , ai ) ∈ C do
5: if d(xi , q) ≤ τ and HV.Match(ai , v j ) = 1 then
6: R = R ∪ {xi};
7: return R;
8: function FILTRATION(Node node, Query (q, τ, v j ))
9: if node is a leaf node with (xi , ai ) then

10: C = C ∪ {(xi , ai )}
11: else if node is an internal node then
12: // Case 1: the key values are (p1, p2)

13: if d(p1,q)2−d(p2,q)2

2d(p1,p2)
≤ τ then

14: FILTRATION(node.Tl, (q, τ, v j ));

15: if d(p2,q)2−d(p1,q)2

2d(p1,p2)
< τ

16: FILTRATION(node.Tr , (q, τ, v j ));

17: // Case 2: the key values are (cd, val)
18: if v j,cd ≤ val then
19: FILTRATION(node.Tl, (q, τ, v j ));
20: else
21: FILTRATION(node.Tr , (q, τ, v j ));

• Verification stage: In the verification stage, the searcher
verifies whether each (xi , ai ) ∈ C satisfies that d(xi , q) ≤ τ
and HV.Match(ai , v j ) = 1. If yes, add xi into the query result,
i.e., R = R ∪ {xi }.

Thus, the basic operations of the similarity range query
scheme with access control include

(1) d(p1,q)2−d(p2,q)2

2d(p1,p2)
≤ τ and v j,cd ≤ val;

(2) d(p2,q)2−d(p1,q)2

2d(p1,p2)
< τ and v j,cd > val;

(3) d(xi , q) ≤ τ and HV.Match(ai , v j ) = 1.
Remarks: From the similarity query algorithm, we can

observe that the query efficiency of our scheme depends on
the filtration effect. To enhance the filtration effect, we can
optimize the structure of k-d-PB tree. When constructing an
internal node, although the key values of each internal node
can be chosen based on either data records or access policy,
we will construct it based on both data records and access
policy, and choose the one that has a better filtration effect
with a high probability. Specifically, when we use the data
records as the key values, we need to consider the probability
that two pivots (p1, p2) and a query request (q, τ ) satisfy the
Hilbert exclusion condition. If the probability is high, we can
choose data records as the key values. Similarly, when we use
the access policy as the key values, either the left subtree and
right subtree can be pruned in similarity queries, as shown in
Alg. 1. Thus, we need to consider that whether the number of
records in the left subtree and right subtree are approximately
equal. If yes, we have potential to obtain a good filtration
effect and can choose the access policy as the key values.

C. Access Pattern Privacy of k-d-PB Tree

When a k-d-PB tree T is accessed, we demand to consider
its access pattern privacy. Since it is widely believed that
hiding the access pattern of each tree path among all tree paths
is unnecessary and outrageously expensive, especially when
the tree is large [24], in this paper, we define a weakened
access pattern privacy of k-d-PB tree, called β-access pattern
unlinkability, as shown in Definition 1.

Definition 1 (k-d-PB Tree’s β-Access Pattern Unlinkabil-
ity): A k-d-PB tree is accessed in a way satisfying β-access
pattern unlinkability if a tree path is indistinguishably accessed
with (β − 1) tree paths for β > 1.

D. Main Idea of Our EPSim-AC Scheme

To well preserve the privacy of k-d-tree based similarity
queries with access control, we first design a way to represent
k-d-PB tree and query requests. Then, based on the designed
representation, we present the main idea of our EPSim-AC
scheme.

Representation of k-d-PB Tree and Query Requests: We
represent k-d-PB tree T and query requests as follows.
• Representation of T’s internal nodes. For each internal

node, based on its key values, we represent it to two (l+d+3)-
dimensional vectors uL and uR , which can be constructed as
follows.

Case 1: When the key values are pivots (p1, p2), we con-
struct uL and uR as�

uL = (0l+1,−d(p1, p2), �p1�2 − �p2�2, p2 − p1);
uR = (0l+1, d(p1, p2), �p1�2 − �p2�2, p2 − p1);

where 0l+1 is an (l + 1)-dimensional zero vector.
Case 2: When the key values are (cd, val), we construct uL

and uR as uL = uR = (0cd−1, 1, 0l−cd,−val, 0d+2), where
0cd−1, 0l−cd, and 0d+2 are respectively (cd − 1)-, (l − cd)-,
and (d + 2)-dimensional zero vectors.
• Representation of T’s leaf nodes. For each leaf node with

the record (xi , ai ), we first replace all “*” attribute values in
ai to 0 and then represent (xi , ai ) to a (2l+d+3)-dimensional
vector zi = (zi,1, zi,2, zi,3), where⎧⎪⎪⎨

⎪⎪⎩
zi,1 = (xi , �xi�2, 1);
zi,2 = (ai,1, ai,2, · · · , ai,l );
zi,3 = (−2a2

i,1,−2a2
i,2, · · · ,−2a2

i,l ,
�l

w=1
a3

i,w).

(2)

• Representation of query requests. For a query request
(q, τ, v j ), we first represent it to an (l + d + 3)-dimensional
filtration vector

t1 = (v j , 1, 2τ, 1, 2q), (3)

and a (2l + d + 3)-dimensional verification vector t2 =
(t2,1, t2,2, t2,3), where⎧⎪⎨

⎪⎩
t2,1 = (−2q, 1, �q�2 − τ 2);
t2,2 = δ2(v2

j,1, v
2
j,2, · · · , v2

j,l);
t2,3 = δ2(v j,1, v j,2, · · · , v j,l , 1),

(4)

and δ > τ .
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Based on the representation of k-d-PB tree and query
requests, we have two inferences.

Inference I: For an internal node and a query request,
whatever key values are in the internal node, we have�

node.Tl needs to be searched ⇔ uL ◦ t1 ≤ 0;
node.Tr needs to be searched ⇔ uR ◦ t1 > 0.

Next, we prove the correctness of Inference I.
Proof: We prove the correctness of Inference I based on

key values of internal nodes.
Case 1: If the key values are pivots (p1, p2), we have

uL ◦ t1 ≤ 0

⇔ (0l+1,−d(p1, p2), �p1�2 − �p2�2, p2 − p1)

◦ (v j , 1, 2τ, 1, 2q) ≤ 0;
⇔ −2τd(p1, p2)+ �p1�2 − �p2�2 + 2(p2 − p1) ◦ q ≤ 0;
⇔ �p1�2 − �p2�2 − 2(p1 − p2) ◦ q

2d(p1, p2)
≤ τ ;

⇔ d(p1, q)2 − d(p2, q)2

2d(p1, p2)
≤ τ ;

⇔ node.Tl needs to be searched.

Similarly, we have

uR ◦ t1 > 0 ⇔ d(p2, q)2 − d(p1, q)2

2d(p1, p2)
< τ ;

⇔ node.Tr needs to be searched.

Case 2: If the key values are (cd, val), we have

uL ◦ t1 ≤ 0;
⇔ (0cd−1, 1, 0l−cd,−val, 0d+2) ◦ (v j , 1, 2τ, 1, 2q) ≤ 0;
⇔ v j,cd − val ≤ 0⇔ v j,cd ≤ val;
⇔ node.Tl needs to be searched.

Similarly, we have

uR ◦ t1 > 0 ⇔ v j,cd > val;
⇔ node.Tr needs to be searched.

Therefore, Inference I holds. �
Inference II: For a leaf node and a query request, we have

zi ◦ t2 ≤ 0⇔ {d(xi , q) ≤ τ and HV.Match(ai , v j ) = 1.}
Next, we prove the correctness of Inference II.

Proof: First, we have

zi ◦ t2 ≤ 0

⇔ (zi,1, zi,2, zi,3) ◦ (t2,1, t2,2, t2,3) ≤ 0;
⇔ zi,1 ◦ t2,1 + zi,2 ◦ t2,2 + zi,3 ◦ t2,3 ≤ 0;

⇔ δ2(

l�
w=1

(ai,w ∗ v2
j,w)+

l�
w=1

(−2a2
i,w ∗ v j,w)+

l�
w=1

a3
i,w)

+�xi�2 − 2 ∗ xi ◦ q+ �q�2 − τ 2 ≤ 0;

⇔ δ2(

l�
w=1

ai,w(v j,w − ai,w)2)+ (xi − q)2 − τ 2 ≤ 0. (5)

Since all values {ai,1, ai,2, · · · , ai,l } and {v j,1, v j,2, · · · , v j,l}
are non-negative integers, we have δ2 	l

w=1 ai,w

(v j,w − ai,w)2 ≥ 0. Since δ > τ , when δ2 	l
w=1 ai,w(v j,w −

ai,w)2 ≥ 1, we have δ2(
	l

w=1 ai,w(v j,w−ai,w)2)−τ 2 > 0 and
furthermore δ2(

	l
w=1 ai,w(v j,w−ai,w)2)+(xi−q)2−τ 2 > 0,

which contradicts with Eq. (5). Hence, we can deduce that

δ2
l�

w=1

ai,w(v j,w − ai,w)2 = 0⇒
l�

w=1

ai,w(v j,w − ai,w)2 = 0.

After that, we have ai,w = 0 or ai,w = v j,w for w =
1, 2, · · · , l. We further have ai,w = “ ∗�� or ai,w =
v j,w, i.e., HV.Match(ai , v j ) = 1. Based on Eq. (5), when	l

w=1 ai,w(v j,w − ai,w)2 = 0, we have (xi − q)2 − τ 2 ≤ 0⇒
d(xi , q) ≤ τ 2. Thus, when zi ◦ t2 ≤ 0, we have

d(xi , q) ≤ τ and HV.Match(ai , v j ) = 1.

Therefore, Inference II holds. �
With Inference I and Inference II, the basic operations of

the similarity query algorithm with access control become�
Internal node: uL ◦ t1 ≤ 0 and uR ◦ t1 > 0;
Leaf node: zi ◦ t2 ≤ 0.

To make the operations uL ◦ t1 ≤ 0 and uR ◦ t1 > 0
indistinguishable, we attach a label lL to uL and a label lR
to uR , and set lL = −1 and lR = 1. In this case, we have�

uL ◦ t1 ≤ 0⇔ sign(uL ◦ t1) = lL ;
uR ◦ t1 > 0⇔ sign(uR ◦ t1) = lR .

The operations on uL and uR become an equality test.
Main Idea of Our EPSim-AC Scheme: Based on the rep-

resentation of k-d-PB tree and query requests, we introduce
the main idea of our scheme. Let T be a k-d-PB tree, whose
key values in each internal node are {uL , lL , uR, lR} and
that in each leaf node is zi . Given a query request {t1, t2},
we introduce a similarity query algorithm to search on T for
the query result. To preserve β-access pattern unlinkability
later, in our similarity query algorithm, we hierarchically
search on T for the query result. Further, to speed up query
efficiency, we associate a flag with each internal node, which
denotes whether the node has been pruned or not. Specif-
ically, if node.flag = 0, it means that node has been
pruned. If node.flag = 1, it means that node has not been
pruned. Especially, at the beginning of the algorithm, we set
T.root .flag = 1 denoting the root node is not pruned. Next,
we introduce the searching algorithm, which has two stages,
i.e., filtration and verification.
• Filtration stage: In the filtration stage, we hierarchically

search on T for a candidate set C. Without loss of generality, let
N = [node1, node2, · · · , node|N |] denote an array of internal
nodes to be searched in the i -th layer of T. Each node j ∈ N
has key values {u j,L, l j,L , u j,R, l j,R} and is associated with a
flag node j .flag. Based on N , we can determine the node
array to be searched in the next layer of T as the following
steps.

Step 1: For each node j ∈ N , we can deduce that

node j .Tl .flag =

⎧⎪⎨
⎪⎩

1 if

�
sign(u j,L ◦ t1) = l j,L ;
node j .flag = 1;

0 Otherwise.

(6)
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node j .Tr .flag =

⎧⎪⎨
⎪⎩

1 if

�
sign(u j,R ◦ t1) = l j,R;
node j .flag = 1;

0 Otherwise.

(7)

That is, node j .Tl .flag = 1 (i.e., node j .Tl needs to
be searched) iff sign(u j,L ◦ t1) = l j,L and its parent
node node j is not pruned, i.e., node j .flag = 1. Meanwhile,
node j .Tr .flag = 1 (i.e., node j .Tr needs to be searched) iff
sign(u j,R ◦ t1) = l j,L and its parent node node j is not pruned,
i.e., node j .flag = 1. Otherwise, we set node j .Tl .flag = 0
and node j .Tr .flag = 0. Then, the nodes need to be searched
in the next layer will be

Nnext,1 = {node j .Tl |node j .Tl .flag = 1; node j ∈ N }
∪ {node j .Tr |node j .Tr .flag = 1; node j ∈ N }.

In contrast, the nodes do not need to be searched will be

Nnext,0 = {node j .Tl |node j .Tl .flag = 0; node j ∈ N }
∪ {node j .Tr |node j .Tr .flag = 0; node j ∈ N }.

Step 2: To guarantee k-d-PB tree’s β-access pattern unlink-
ability, we will randomly choose |Nnext,1|∗(β−1) nodes from
Nnext,0 and add them into Nnext,1. Note that when the number
of nodes in Nnext,0 is smaller than |Nnext,1| ∗ (β−1), we will
add all nodes in Nnext,0 into Nnext,1.
• Verification stage: For each record zi ∈ C, we verify

whether it satisfies the query request by checking zi ◦ t2
?≤ 0.

E. Our EPSim-AC Scheme

In this subsection, we present our EPSim-AC scheme.
Before presenting our scheme, we introduce two default cal-
culation methods in the following description of our scheme.

(1) We use SHE technique to encrypt an integer vec-
tor x = (x1, x2, · · · , xd) into a ciphertext vector E(x) as
E(x) = (E(x1), E(x2), · · · , E(xd)). Especially, S1 will not
be assigned a secret key sk in our EPSim-AC scheme, so it
encrypts vectors using public SHE technique in Eq. (1). S2 will
be assigned an sk, so it encrypts vectors using the original SHE
technique.

(2) To prevent S2 from knowing the structure of k-d-PB tree,
when S1 accesses each layer of k-d-tree, it first permutates
the nodes to be accessed. After it receives the result related to
these nodes from S2, it uses the same permutation method to
permute the result again.

Specifically, our EPSim-AC scheme contains three phases,
i.e., system initialization, data outsourcing, and query process-
ing. Details are shown as follows.
• System Initialization: In the system initialization phase,

HC is responsible for initializing the system. First, it chooses
three security parameters (k0, k1, k2) and generates a pair
of SHE’s public key and secret key as (pk, sk) ←−
KeyGen(k0, k1, k2). Second, it generates three ciphertexts
{E(0)1, E(0)2, E(−1)}. Then, it generates a hash-based mes-
sage authentication codes (HMAC), i.e., HK (·), where K is
a secret key. Finally, it publishes {pk, E(0)1, E(0)2, E(−1)},
distributes HK (·) to S1 and users, and distributes sk to S2.
• Data Outsourcing: In the data outsourcing phase, HC out-

sources its dataset to the cloud server S1. Specifically, let

X = {(xi , ai )|i = 1, 2, · · · , n} be a healthcare dataset. The
HC outsources it to S1 as the following steps.

Step 1: HC represents X to be a k-d-PB tree T.
Then, it encrypts T into E(T ). Specifically, for each
internal node, HC first represents it to a four-tuple
{uL, lL , uR , lR} and further encrypts it into a ciphertext
{E(uL), E(lL), E(uR), E(lR)}. For each leaf node, HC first
represents it to zi and then encrypts zi into a ciphertext E(zi ).
After that, T will be encrypted into an encrypted k-d-PB tree,
denoted by E(T).

Step 2: HC further randomly permutates the left and right
subtrees of each internal node and sends the permutated E(T)
to the cloud server S1.
• Query Processing: On receiving E(T), S1 can offer

similarity range query service with access control to doctors
with the help of S2. Specifically, a doctor U j with the identity
id j can launch a query request (q, τ, v j ) to S1 as follows.

Step 1: U j generates a query token for (q, τ, v j ).
Specifically, it represents (q, τ, v j ) to two vectors {t1, t2}
and encrypts them into ciphertexts {E(t1), E(t2)}. Then,
it chooses a session key ssk and encrypts it into a cipher-
text AESHK (id j )(ssk). Finally, U j sends a query request
with the query token {E(t1), E(t2), AESHK (id j )(ssk), id j }
to S1.

Step 2: On receiving {E(t1), E(t2), AESHK (id j )(ssk), id j },
S1 searches on E(T) to find out the query result. The searching
process has a filtration stage and a verification stage. The for-
mer filters out candidate data records that possibly satisfy the
query request, and the latter verifies whether each candidate
record satisfies the query request.

Filtration Stage: In the filtration stage, two cloud servers
hierarchically search on E(T) for the candidate records,
as shown in Alg. 3. Without loss of generality, let N =
[node1, node2, · · · , node|N |] denote an array of internal
nodes in the i -th layer of E(T) to be searched. Meanwhile,
each node j ∈ N is related to an encrypted flag

E(node j .flag) =
�

E(1) node j is not pruned;
E(0) node j is pruned.

Then, S1 and S2 cooperate on searching N as follows.
Step 1: For each node j ∈ N with {E(uL), E(lL), E(uR),

E(lR)}, S1 does the following computation.
(1) S1 uses SHE’s homomorphic properties to compute

E(uL ◦ t1) and E(uR ◦ t1). Then, it runs sign computation
protocol with S2 such that S2 obtains sign(uL ◦ t1) and
sign(uR ◦ t1). After that, S2 sends E(sign(uL ◦ t1)) and
E(sign(uR ◦ t1)) to S1.

(2) For each node j ∈ N , S1 uses SHE’s homomorphic
properties to compute

E(s j,L)

= E(r j,L(sign(uL ◦ t1)− lL)+ r �j,L(node j .flag− 1));
(8)

E(s j,R)

= E(r j,R(sign(uR ◦ t1)− lR)+ r �j,R(node j .flag− 1)),

(9)
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where {r j,L , r �j,L, r j,R, r �j,R} ∈ M are non-zero. It is worth
noting that since {r j,L, r �j,L} are non-zero, we have

s j,L=0⇔
�

sign(uL ◦ t1)= lL ;
node j .flag = 1.

⇔ node j .Tl .flag=1.

(10)

and

s j,R=0⇔
�

sign(uR ◦ t1)= lR;
node j .flag = 1.

⇔ node j .Tr .flag=1.

(11)

Then, based on {E(s j,L), E(s j,R)}node j∈N , S1 constructs an
array A with 2|N | elements, where

A[2 ∗ j − 1] = E(s j,L) and A[2 ∗ j ] = E(s j,R)

for 1 ≤ j ≤ |N |. Finally, it sends A to S2.
Step 2: On receiving A, S2 decrypts each A[k] as mk ←

Dec(sk, A[k]) for 1 ≤ k ≤ |A| and constructs two sets
{B0,B1} as�

B0 = {(k, E(mk))|mk �= 0; 1 ≤ k ≤ 2|N |};
B1 = {(k, E(mk))|mk = 0; 1 ≤ k ≤ 2|N |}. (12)

which respectively denote indices to be and not to be searched
in the next layer. This is because when mk = 0, we have�

s j,L = 0⇒ node j .Tl .flag = 1 k = 2 j − 1;
s j,R = 0⇒ node j .Tr .flag = 1 k = 2 j.

That is, the node with index k needs to be searched in the next
layer. Similarly, when mk �= 0, the node with index k will not
be searched in the next layer.

In addition, to guarantee k-d-PB tree’s β-access pattern
unlinkability, S2 will randomly choose a subset B�0 from B0
such that |B�0| = |B1| ∗ (β − 1). Especially, when |B�0| <
|B1| ∗ (β − 1), S2 sets B�0 = B0. Then, it sends B1 ∪B�0 to S1.

Step 3: On receiving B1∪B�0, S2 constructs the nodes to be
searched in the next layer. Specifically, for each k ∈ B1 ∪ B�0,
if k = 2 j−1, node j .Tl needs to be searched and E(m2 j−1) is
the flag of node j .Tl . If k = 2 j , node j .Tr needs to be searched
and E(m2 j ) is the flag of node j .Tr . That is, the nodes to be
searched in the next layer are

Nnext = {(node j .Tl, E(m2 j−1))|2 j − 1 ∈ B1 ∪ B�0}
∪ {(node j .Tr , E(m2 j ))|2 j ∈ B1 ∪ B�0}.

Then, S1 organizes Nnext to a node array and sets N = Nnext ,
which will be searched in the next layer.

Step 4: S1 continues to run Step 1-Step 3 to search N until
E(T)’s last layer is searched.

Verification Stage: In the verification stage, two servers
verify whether each candidate record with the ciphertext E(zi )
in C satisfies the query request or not as follows.

Step 1: S1 uses SHE’s homomorphic properties to compute
E(zi ◦t2) and runs the sign computation protocol with S2 such
that S2 obtains sign(zi ◦ t2).

Step 2: S1 chooses a d-dimensional random vector ri =
(ri,1, ri,2, · · · , ri,d ), where ri, j ∈ {0, 1}k1 . Then, it extracts
the d-dimensional data record E(xi ) from E(zi ), i.e., values

in the first d dimensions of E(zi ). Furthermore, it computes
E(xi +ri )→ E(yi). Then, it computes HK (id j ) and decrypts
AESHK (id j )(ssk) to recover the session key ssk. After that,
it uses ssk to encrypt ri as AESssk(ri ). Finally, S1 sends
{E(yi), AESssk(ri )} to the server S2.

Step 3: On obtaining sign(zi ◦ t2) and {E(yi), AESssk(ri )},
if sign(zi ◦ t2) = −1, S2 uses sk to recover yi from E(yi ) and
returns {yi , AESssk(ri )} to U j .

Step 4: On receiving {yi , AESssk(ri )}, U j uses ssk to
recover ri from AESssk(ri ) and recovers xi as xi = yi − ri .

Algorithm 3 Filtration(Tree E(T), Token E(t1))
1: Set C = ∅; // Candidate query result
2: Array N = [E(T).root]; // Nodes to be searched at start
3: Array A; // an array of length 2|N |
4: for i = 1, 2, · · · , E(T).height do

Server S1:
5: for each N [ j ] with {E(uL), E(lL), E(uR), E(lR)} do
6: Compute E(uL ◦ t1) and E(uR ◦ t1);
7: Compute E(sign(uL ◦ t1)) and E(sign(uR ◦ t1));
8: Compute E(s j,L) and E(r j,R) as Eq. (8) and Eq. (9);
9: A[2 ∗ j − 1] = E(s j,L); A[2 ∗ j ] = E(s j,R);

Server S1 to S2: S1
A−→ S2;

Server S2:
10: for k = 1, 2, · · · , 2|N | do
11: mk ← Dec(sk, A[k]);
12: B0 = {(k, E(mk))|mk �= 0; 1 ≤ k ≤ 2|N |};
13: B1 = {(k, E(mk))|mk = 0; 1 ≤ k ≤ 2|N |};
14: Choose a set B�0 from B0 such that |B�0| = |B1|∗(β−1);

Server S2 to S1: S2
B1∪B�0−−−−→ S1;

Server S1:
15: Nnext = {(node j .Tl , E(m2 j−1))|2 j − 1 ∈ B1 ∪ B�0};∪ {(node j .Tr , E(m2 j ))|2 j ∈ B1 ∪ B�0};
16: N = Nnext ;
17: return R;

Algorithm 4 Verification(Candidate set C, Token E(t2))
1: Set R = ∅; // Query result
2: for each E(zi ) ∈ C do

Server S1:
3: Compute E(zi ◦ t2);
4: Run the sign computation protocol→ S2 : sign(zi ◦ t2);
5: E(yi)← E(xi + ri );
6: Compute HK (id j );
7: ssk ← decrypt AESHK (id j )(ssk);
8: Compute AESssk(ri );

Server S1 to S2: S1
E(yi ),AESssk (ri )−−−−−−−−−−→ S2;

Server S2:
9: if sign(zi ◦ t2) == −1 then

10: yi ← E(yi );

Server S2 to U j : S2
yi ,AESssk (ri )−−−−−−−→ U j ;

User U j :
11: ri ← AESssk(ri ); xi = yi − ri ; R = R ∪ {xi};
12: return R;
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V. SECURITY ANALYSIS

In this section, we analyze the security of our scheme.
As described in our design goal, we aim to preserve the data
privacy of healthcare dataset, similarity query requests, and
query results, and protect the access pattern of healthcare data
from two honest-but-curious cloud servers. Next, we show that
our scheme satisfies our design goal.

Theorem 2: Healthcare dataset, query requests, and query
results can be kept secret from server S1.

Proof: We first list the view of S1 and show why S1 cannot
obtain any information on the plaintext of healthcare dataset,
query request, and query results from its views.
• View 1: encrypted k-d-PB tree E(T). Since E(T) is

encrypted by the SHE technique that is proved to be the
semantically secure [28], S1 cannot obtain any information
about the healthcare dataset from E(T).
• View 2: query token {E(t1), E(t2), AESHK (id j )(ssk)}.

Since E(t1) and E(t2) are ciphertexts of SHE technique, the
security of SHE technique can guarantee that S1 cannot deduce
any information about t1 and t2. Meanwhile, AESHK (id j )(ssk)
is the ciphertext of ssk that can be legitimately accessed by S1.
Thus, S1 cannot obtain any information about query requests
from {E(t1), E(t2), AESHK (id j )(ssk)}.
• View 3: When searching E(T)’s each layer N =
[node1, node2, · · · , node|N |], S1 can view each node j ’s
E(sign(u j,L ◦ t1)) and E(sign(u j,R ◦ t1)), and the nodes need
to be searched in the next layer, i.e.,

Nnext = {(node j .Tl, E(m2 j−1))|2 j − 1 ∈ B1 ∪ B�0}
∪ {(node j .Tr , E(m2 j ))|2 j ∈ B1 ∪ B�0}.

Since each node j ’s E(sign(u j,L ◦ t1)) and E(sign(u j,R ◦
t1)) are SHE technique’s ciphertexts, the security of SHE
technique can ensure that S1 has no idea on the plaintext
of {u j,L, u j,R, t1}. For the nodes in Nnext , S1 may try to
deduce whether an internal node’s left or right subtree satisfies
the query request and further deduce the range of the query
request. However, on the one hand, to guarantee k-d-PB tree’s
β-access pattern unlinkability, Nnext contains some nodes
that do not satisfy the query request but are searched in the
next layer. On the other hand, since E(T)’s left and right
subtrees have been permutated, S1 cannot match the left and
right subtrees of E(T) to that of the original tree T. Hence,
S1 cannot know which node’s left or right subtree really
satisfies the query request and cannot do the further inference.
Thus, healthcare dataset, query request, and query results can
be kept secret from S1. �

Theorem 3: Healthcare dataset, query requests, and query
results can be kept secret from server S2.

Proof: We list the view of S2 and show why S2 cannot
obtain any information on the plaintext of healthcare dataset,
query request, and query results from its view as follows.
• View 1: When searching E(T)’s each layer N =
[node1, node2, · · · , node|N |], S2 can view {sign(u j,L ◦
t1), sign(u j,R ◦ t1)} and {B0,B1} (i.e., indices to be and not
to be searched in the next layer).�

B0 = {(k, E(mk))|mk �= 0; 1 ≤ k ≤ 2|N |};
B1 = {(k, E(mk))|mk = 0; 1 ≤ k ≤ 2|N |}.

S2 obtains each node j ’s {sign(u j,L ◦ t1), sign(u j,R ◦ t1)}
through the sign computation protocol. We have proved that
the sign computation protocol is privacy-preserving in [28]
and can guarantee that S2 cannot obtain any information about
{u j,L, u j,R, t1}. For {B1,B0}, they have been permutated, S2
cannot match B0[k] or B1[k] to the node in the original node
array N . In this case, S2 only knows the number of internal
nodes to be or not to be searched in the next layer but does
not know which nodes they are.
• View 2: When verifying each E(zi ), S2 can view sign(zi ◦

t2), yi , and AESssk(ri ). Since sign(zi ◦ t2) is obtained through
the sign computation protocol, the security of the sign compu-
tation protocol can guarantee that S2 has no idea on {zi , t2}.
For yi , since it is in the form of yi = xi+ri , the unknownness
of ri can guarantee that S2 has no idea on xi . For AESssk(ri ),
the security of AES can guarantee that S2 cannot recover ri
from the ciphertext AESssk(ri ) without the secret key ssk.
Thus, S2 cannot obtain any information about data records,
query requests, and query results. �

Theorem 4: Our EPSim-AC scheme satisfies k-d-PB tree’s
β-access pattern unlinkability.

Proof: In our scheme, S1 stores a k-d-PB tree E(T),
and only it has a chance to learn about the access pattern
of E(T). However, it cannot break k-d-PB tree’s β-access
pattern unlinkability. Specifically, in each query, the number
of accessed tree paths depends on that of candidate data
records (that may satisfy the query request). Without loss of
generality, we suppose that there are γ candidate data records,
and all of them are located in the last layer of k-d-PB tree.
Based on the description of our scheme, when S1 determines
which nodes need to be accessed in the last layer, S2 will
randomly add γ (β − 1) nodes (not to be searched) to the set
of nodes (to be searched). On the one hand, when the tree
is small, the number of all E(T)’s data records may be less
than β ∗ γ . In this case, as described in our scheme, S2 will
add all nodes (not to be searched) to the set of nodes (to
be searched). Our scheme will satisfy the full access pattern
privacy, let alone β-access pattern unlinkability. On the other
hand, when the tree is large, the number of candidate data
records will be much smaller than that of all E(T)’s data
records. S2 will randomly add γ (β − 1) nodes (not to be
searched) to the set of nodes (to be searched). In this case,
γ candidate data records will be accessed with other γ (β−1)
data records. Since each node corresponds to a tree path,
it means that γ tree paths will be accessed with γ (β − 1)
tree paths. Then, one tree path is indistinguishably accessed
with (β − 1) on average. Thus, our similarity query scheme
with access control satisfies k-d-PB tree’s β-access pattern
unlinkability. �

For a clear description, we give an example to show the
probability that S1 can correctly figure out the access pattern
of a query in Example 2.

Example 2: Suppose that a k-d-PB tree is large and the
query range is small. The number of candidate data records
is γ , and there will be γ (β − 1) data records (not to be
searched) to be accessed with γ candidate records. In this
case, S1 can correctly figure out tree paths of γ candidate
records among all tree paths of γ ∗ β with the probability
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prob = 1
(γ ∗β

γ )
. When β = 5 and γ = 10, we can deduce that

prob = 1
γ ∗β
γ

� = 1
50
10

� = 9.73× 10−11.

The probability is pretty small, so our EPSim-AC scheme
can well preserve the access pattern privacy. �

VI. PERFORMANCE EVALUATION

In this section, we evaluate the computational cost of our
EPSim-AC scheme and compare it with an existing similarity
query scheme, i.e., SkNN in [16]. The reason why we compare
our scheme with SkNN is that it can achieve similarity queries
with access pattern privacy and can be adapted to process
similarity queries with access control.

SkNN is a secure kNN query scheme and was constructed
based on the Pailler homomorphic encryption technique under
the model of two servers (i.e., S1 and S2). Its main idea
is to encrypt each data record xi into a ciphertext vector
Paillier.Enc(xi) using the Paillier technique and outsource
them to S1. When a user intends to launch a query request
with a query record q, it encrypts q into a ciphertext vector
Paillier.Enc(q) using Paillier technique and sends it to S1.
On receiving q, S1 linearly checks each xi and determines
whether xi is a kNN of q with the help of S2. SkNN can be
adapted to process similarity range queries with access control.
Specifically, same as our scheme, each (xi , ai ) is represented
to a vector zi as Eq. (2), and each query request (q, τ, v j )
is represented as a vector t2 as Eq. (3). Then, zi and t2
are encrypted into two ciphertext vectors Paillier.Enc(zi ) and
Paillier.Enc(t2). To verify whether (xi , ai ) satisfies the query

request (q, τ, v j ), S1 determines whether zi ◦ t2
?≤ 0.

(1) S1 uses SkNN’s secure multiplication protocol and
homomorphic property to calculate Paillier.Enc(zi ◦ t2). Same
as our scheme, S1 chooses two random numbers {r1, r2} ∈
{0, 1}δ satisfying r1 > r2 > 0, where δ is a parameter and
much less than Paillier technique’s security parameter. Then,
S1 calculates Paillier.Enc(r1(zi ◦ t2)− r2).

(2) S1 extracts Paillier.Enc(xi) from the first d dimen-
sions of zi . Then, it chooses a random vector ri with the
same length as xi and computes Paillier.Enc(ri + xi).
Meanwhile, it encrypts ri as AESssk(ri ). After that,
S1 sends {Paillier.Enc(r1(zi ◦ t2) − r2), Paillier.Enc(ri +
xi ), AESssk(ri )} to S2.

(3) On receiving them, S2 decrypts Paillier.Enc(r1(zi ◦t2)−
r2) to recover a plaintext m = r1(zi ◦t2)−r2. If length(m) ≈ N,
it means that zi ◦ t2 ≤ 0, where N is the modulus of Paillier
technique. In this case, S1 recovers ri + xi by decrypting
Paillier.Enc(ri + xi) and returns {ri + xi , AESssk(ri )} to the
query user.

(4) The query user recovers ri by decrypting AESssk(ri )
and recovers the query result xi as xi = ri + xi − ri .

We implemented our scheme and adapted SkNN in Java
and conducted experiments on a machine with Apple M1
chip, 16 GB RAM, and macOS Big Sur operating system.
The parameters of SHE technique are set as k0 = 1024,
k1 = 40, and k2 = 160. The security parameter of Paillier
technique is set as κ = 512. Since it is difficult to find a real
dataset simultaneously containing data records and attribute

values, we evaluated the performance of our scheme on a real
medical EEG dataset [30] containing 14980 14-dimensional
records and without attribute values. Meanwhile, we appended
4 dimensions to each record as attribute values, and each value
is randomly chosen from {2, 4, ∗}. In addition, we evaluated
the performance of our scheme on a synthetic dataset with
25000 12-dimensional records, where the first 8 dimensions
in each record are data values and the last 4 dimensions are
attribute values. Each data value is in the range of [0, 70], and
each attribute value is chosen from {2, 4, ∗}. Each experiment
is evaluated 100 times and the average result is reported.

A. Computational Cost of Dataset Outsourcing

In our scheme, the computational cost of dataset outsourcing
comes from building and encrypting a k-d-PB tree for the
healthcare dataset X , which is related to three parameters:
(i) n: the size of the dataset; (ii) d: the dimension of data
records; and (iii) l: the dimension of attribute values. Since l
has the same effect on the performance of data outsourcing
as d . In our experiment, we fix l to 4 and focus on evaluating
the computational cost of data outsourcing with n and d .

In Figs. 4(a) and 4(b), we plot the computational cost of our
scheme and adapted SkNN’s dataset outsourcing varying with
n and d over EEG dataset and a synthetic dataset. In this
experiment, the parameters are set based on datasets. For
EEG dataset, we set n ∈ {6000, 8000, 10000, 12000, 14000}
and d ∈ {4, 6, 8}. For the synthetic dataset, we set
n ∈ {5000, 10000, 15000, 20000, 25000} and d ∈ {4, 6, 8}.
From Figs. 4(a) and 4(b), we can see that the compu-
tational cost of our scheme and adapted SkNN’s dataset
outsourcing increases with n and d , but our scheme is
much more efficient than adapted SkNN. For instance,
outsourcing 14000 8-dimensional EEG data records only
takes 16939 ms in our scheme while that takes 684516 ms in
adapted SkNN.

B. Computational Cost of Query Token Generation

In our scheme, the computational cost of query token gener-
ation comes from representing the query request (q, τ, v j ) to
two vectors {t1, t2} and encrypting {t1, t2} into ciphertexts. It is
closely associated with two parameters: (i) d: the dimension
of query record; and (ii) l: the dimension of attribute values.
Same as the evaluation of computational cost of dataset
outsourcing, we fix l to be 4 and focus on evaluating the
computational cost of query token generation varying with d .
Since the computational cost of query token generation is not
affected by the distribution of the dataset, we only conducted
the performance evaluation of query token generation on EEG
dataset. In TABLE I, we list the computational cost of query
token generation with d , where d ∈ {4, 6, 8}. From TABLE I,
we can see that the computational cost of query token gen-
eration grows with d . This is because when d increases, the
dimension of t1 and t2 will correspondingly increase as shown
in Eq. (3) and Eq. (4). The computational cost of encrypting
t1 and t2 will become larger. Hence, the query user needs
to take more computational cost to generate the query token.
Nevertheless, our scheme is still more than 300 times faster
than that of the adapted SkNN.
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Fig. 4. Performance evaluation.

TABLE I

COMPUTATIONAL COST OF QUERY TOKEN GENERATION

C. Computational Cost of Query Processing

In our scheme, the computational cost of query processing
comes from searching encrypted k-d-PB tree for query results,
which is affected by four parameters: (i) n: the size of the
dataset; (ii) d: the dimension of data records; and (iii) l: the
dimension of attribute values; and (iv) τ : query range. In our
evaluation, we fix l to be 4 and focus on evaluating the
performance of our scheme varying with n, d , and τ .

In Figs. 4(c) and 4(d), we plot the computational cost
of our scheme and adapted SkNN’s query processing vary-
ing with n and d over EEG dataset and a synthetic
dataset. In this experiment, to guarantee the size of
each query result is the same, we set τ = 1. For
other parameters, we set them based on datasets. For EEG
dataset, we set n ∈ {6000, 8000, 10000, 12000, 14000} and
d ∈ {4, 6, 8}. For the synthetic dataset, we set n ∈
{5000, 10000, 15000, 20000, 25000} and d ∈ {4, 6, 8}. From
Figs. 4(c) and 4(d), we can see that the computational cost of
our scheme and adapted SkNN’s query processing increases
with n and d but our scheme is much efficient than adapted
SkNN. For instance, processing a query over EEG dataset
with 14000 8-dimensional data records takes 66.46 ms in our
scheme while that takes 5169080 ms in adapted SkNN.

In Figs. 4(e) and 4(f), we plot the computational cost of our
scheme and adapted SkNN’s query processing varying with τ
over EEG dataset and a synthetic dataset. In this experiment,

TABLE II

COMPUTATIONAL COST OF QUERY RESULT RECOVERY

we set the parameters of EEG dataset as: n = 14000, d = 6,
and τ ∈ {1, 2, 3, 4, 5}. We set the parameters of the synthetic
dataset as n = 15000, d = 6, and τ ∈ {1, 2, 3, 4, 5}. From
Figs. 4(e) and 4(f), we can see that the computational cost of
our scheme and adapted SkNN’s query processing increases
with τ . This is because the size of query results increases
with the growth of τ . Meanwhile, our scheme is much more
efficient than adapted SkNN.

D. Computational Cost of Query Result Recovery

In our scheme, the computational cost of query result
recovery is from decrypting ri from the ciphertext AESssk(ri ),
which is related to the dimension of data records, i.e., d .
Since the computational cost of query result recovery in
adapted SkNN is the same as that of our scheme, we only
conduct the evaluation for our scheme. As shown in TABLE II,
we evaluate the computational cost of recovering one ri from
the corresponding ciphertext AESssk(ri ) varying with d . From
TABLE II, we can see that the computational cost increases
with d but is pretty efficient. For instance, recovering a
6-dimensional ri only takes 3.503 μs.

VII. RELATED WORK

Privacy-preserving similarity query has been extensively
studied, and various schemes have been proposed. In this
section, we review some of them closely related to our work.
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Some privacy-preserving similarity query schemes were
designed based on the matrix encryption technique. In 2009,
Wong et al. [7] proposed an asymmetric scalar-product-
preserving encryption (ASPE) scheme and utilized it to con-
struct an efficient kNN query scheme. Based on this scheme,
Cao et al. [8] proposed a privacy-preserving multi-keyword
ranked search scheme, and Wang et al. [9] proposed a privacy-
preserving multi-keyword fuzzy search scheme. Since the
schemes [7]–[9] encrypt data through matrix encryption, they
are efficient. However, they have a weak security and cannot
resist against known-plaintext attacks, as proved in [31].
To improve security of these schemes, Zhang et al. [10] inte-
grated ASPE scheme with Paillier homomorphic encryption
technique to design a similarity query scheme but the proposed
scheme is secure under a strong assumption that the cloud
server has no idea on any plaintext query vector. Recently,
Zheng et al. [11] proposed a modified ASPE scheme to
enhance the security of matrix encryption by introducing more
random numbers into ciphertexts and presented a Quadsector
tree structure to improve query efficiency. However, these
schemes do not consider either access pattern privacy or access
control.

Some privacy-preserving similarity query schemes were
designed based on public key encryption techniques. In 2013,
Rane and Boufounos [12] constructed a secure similarity
query scheme using homomorphic encryption techniques.
Since the proposed scheme was designed under the model
of client and server, the computational cost at the client
side is high. To reduce the computational cost of the client
side, Zheng et al. [2] leveraged a k-d-tree structure to repre-
sent data and further proposed an efficient similarity query
scheme under the model of two non-collusive servers. How-
ever, the scheme in [2] did not take the privacy of access
pattern into consideration. To preserve access pattern privacy,
Elmehdwi et al. [16] used homomorphic encryption technique
to design an access-pattern privacy-preserving similarity query
scheme. Wu et al. [17] integrated Paillier encryption technique
and ElGamal technique to propose a secure kNN classifi-
cation scheme with access pattern privacy. Guan et al. [18]
proposed an access-pattern privacy-preserving kNN query
scheme based on a 2-2 threshold Paillier homomorphic encryp-
tion technique. Cui et al. [19] leveraged Voronoi diagram
to represent dataset and further employed Paillier homo-
morphic encryption technique to propose an access pattern
privacy-preserving similarity query scheme. However, these
access pattern privacy-preserving schemes [16]–[19] are com-
putationally expensive and do not take access control into
consideration.

Some privacy-preserving approximate similarity query
schemes were proposed. Kuzu et al. [13] constructed a simi-
larity query scheme using employed locality-sensitive hash-
ing (LSH). Yuan et al. [14] constructed a similarity query
scheme using symmetric searchable encryption and LSH.
Lei et al. [15] constructed a location-based similarity query
scheme by coding nearby regions but this scheme can only
applicable to similarity queries over two-dimensional data.
In addition, all of these approximate similarity query schemes
can only return approximate query results and do not consider
either access pattern privacy or access control.

Different from the above schemes, we design an efficient
and privacy-preserving similarity query scheme supporting
access control, which has not only high efficiency but also
access pattern privacy.

VIII. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving similarity query scheme with access control for
encrypted healthcare data, which not only preserves k-d-PB
tree’s β-access pattern unlinkability but also has high effi-
ciency. In this scheme, we first introduced a k-d-PB tree to
represent healthcare dataset and designed an efficient k-d-PB
tree based similarity query algorithm with access control.
Second, we defined a kind of weakened access pattern privacy,
called k-d-PB tree’s β-access pattern unlinkability. Then,
we preserved the privacy of similarity queries with access
control through SHE technique and proposed our EPSim-AC
scheme. In our future work, we will explore to implement
similarity queries with access control by designing new data
structures and privacy-preserving protocols.
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